
Wavelengh Calculation - By Wien's displacement law

Radiant Heat Transfer Formula

1 Stefan-Boltzman Equation - To calculate the amount of power radiated by the heater.

<u>Watts Radiated =</u> Constant x (absolute temperature)^4

Area

 Watts =
 (0.1714 x 10^8 BTU/Hrft^2 °R) (°F + 460)^4

 ft^2
 3.412 BTU

Net Watts Radiated = Constant [(Heater Absolute Temperature)^4 - (Product Absolute Temperature)^4] Area

<u>Net Watts Radiated =</u> 3.4885 X 10 ^(-12) [(Th + 460 °R)^4 - (Tp + 460 °R)^4] In^2

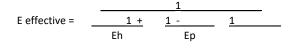
Th = Heater Temp. (°F) Tp = Product Temp. (°F)

2 View Factor - It describes what percentage of the energy radiated by the heater actually hits the product.

M = <u>Heater Width</u>

Distance to Product

N = Heater Length


Distance to Product

Note : M and N are interchangable

For Example	
Heater Width	4 Inch
Heater Length	12 Inch
Distance from Product	8 Inch
Μ	0.5 Inch
Ν	1.5 Inch

3 Emissivity - It determines how much of the incident radiant energy is actually absorbed by the product

Total Incident Energy =	 Absorbed + Reflected + Transmitted
Heater Emmisivity	
Watts Radiated =	Stefan-Boltzman Equation x Emissivity Heater
Watts Absorbed =	Stefan-Boltzman Equation x Eh x Ep x View Factor
	Eh = Emmisivity Of heater (0.85) Ep = Emmisivity Of Product

Problem Solving

Step I

Collect Application Information
Initial and final material temperature
Heat-up time
Specific heat of material
Density or weight of material
Material size
Heat of vaporization/fusion of material, if applicable
Conveyor speed, if applicable
Emissivity of material or absorption spectrum
Heater to material distance
Proposed heater layout: size, spacing, heating one or both sides
Are there secondary heat leads such as air convoyer ato 2

Step II Determine the Required Wattage

Change in Temperature:

```
W/in2 = <u>Weight (lbs)/in2 x Specific Heat x Change in Temperature (°F)</u>
Time (hr) x watt hr
```

Change in Phase: - (Water to steam)

W/in2 = <u>Weight (lbs)/in2 x Latent Heat of Fusion</u> Time (hr) x watt hr

Step III Compute the Absorbed Wattage for a Proposed Heater Array

- Watts =
 S(Th^4-Tp^4) X E X F

 In^2
 144 in^2/Ft^2 X 3.412 BTU/Watt Hr
- W/in^2 = Watt per square inch absorbed by product S = Stefan-Boltzman Constant (0.1714 x 10^8 BTU/Hrft^2 °R) F = View Factor Th = Heater Temperature in °R = °F + 460 Tp = Product Temperature in °R = °F + 460

Since the product temperature Tp is continously changing, the avg. product temperature is used :

Avg Product Temp =

<u>T (initial) + T (Final)</u> 2

E = Effective Emissivity. When heater and product are parallel planes.

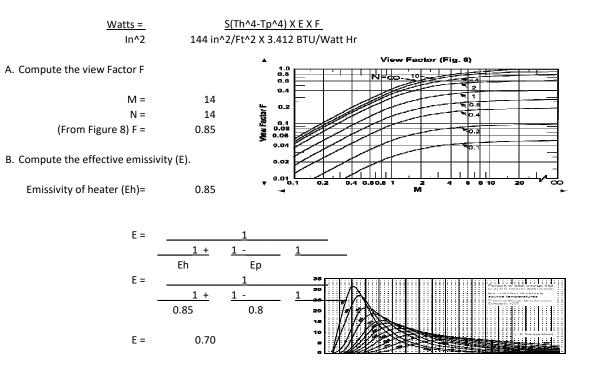
$$E = \frac{1}{1 + \frac{1 - 1}{Ep}}$$

Eh = Emmisivity Heater = 0.85 Ep = Emmisivity Of Product

Example 1 GIVEN

TO heat SS 304 Sheet to 300	°F from 60°F		
InitialTemp	60 °F		
Final Temp	300 °F		Volume
Product Size	24*24*0.031	Inch	17.856 Inch^3
SS 304 Emmisivity	0.8		
Heater to Product	2	Inch	
Sp Weight of Steel =	500	Lbs/Ft^3	

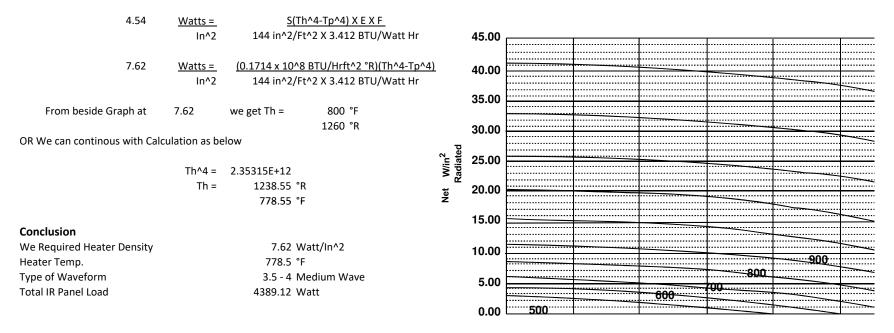
SOLUTION


1 Collect data assuming uniform h	heating on Product
-----------------------------------	--------------------

	Width		Length	
Heater Size	28	Inch		28 Inch
Delta T =	240	°F		
Weight/In^2	0.008969907	for Steel		
Specific Heat	0.12	BTU/lb°F		
Time	1	Mins		
	0.016666667	Hours		
Emissivity of Product (Ep)	0.8			

2 Wattage Required

Watt = ^V T	Veight X Sp. Heat X Delta T ime X 3.412 BTU/Watt hr	
<u>Watt =</u> In^2	<u>0.00897 X 0.12 X 240</u> 0.0167 X 3.412	<u>lbs/In^2 X BTU/Ib°F X °F</u> Hrs. X BTU/watt. Hr
<u>Watt =</u>	4.542790152	


3 Radiant Heat Transfer Equation

C. Determine the average product temperature (Tp) Tp= FT+IT

<u>FT+IT</u> 2 180 °F 640 °R

D. Plug into the radiant heat transfer Equation

